metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

{4,4'-Dichloro-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenolato- $\kappa^4 O, N, N', O'$ }(pyridine- κN)zinc(II)

Naser Eltaher Eltayeb,^a‡ Siang Guan Teoh,^a Suchada Chantrapromma,^b§ Hoong-Kun Fun^c* and Kamarulazizi Ibrahim^d

^aSchool of Chemical Science, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, ^bDepartment of Chemistry, Faculty of Science, Prince of Songkla University, Hat-Yai, Songkhla 90112, Thailand, ^cX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^dSchool of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 6 May 2007; accepted 9 May 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.039; wR factor = 0.111; data-to-parameter ratio = 26.4.

There are two unique molecules of the title mononuclear zinc(II) complex, $[Zn(C_{20}H_{12}Cl_2N_2O_2)(C_5H_5N)]$, in the asymmetric unit. The Zn^{II} ion is five-coordinate in a distorted square-pyramidal geometry, with the basal plane defined by the two N and two O atoms of the Schiff base ligand and the apical position occupied by the N atom of the pyridine. The N and O atoms of the Schiff base ligand are mutually *cis*. The molecules are linked by weak C-H···Cl interactions into chains along the *b* axis. Other molecules are arranged diagonally between adjacent chains and bridge the chains through weak C-H···O interactions. The crystal structure is further stabilized by weak intra- and intermolecular C-H···O hydrogen bonds and C-H··· π interactions.

Related literature

For a background to Schiff base coordination complexes, see: Pal *et al.* (2005); Collinson & Fenton (1996); Tarafder, Chew *et al.* (2002); Tarafder, Jin *et al.* (2002). For related literature on values of bond lengths, see: Allen *et al.* (1987). For related structures, see for example: Humphrey *et al.* (1999); Eltayeb *et al.* (2007).

 $\gamma = 103.791 \ (3)^{\circ}$

Mo $K\alpha$ radiation

 $\mu = 1.40 \text{ mm}^{-1}$

 $R_{\rm int} = 0.060$

595 parameters

 $\Delta \rho_{\text{max}} = 0.59 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$

T = 100.0 (1) K

Z = 4

 $V = 2183.11 (19) \text{ Å}^3$

 $0.60 \times 0.20 \times 0.12 \text{ mm}$

55655 measured reflections

15712 independent reflections

12030 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Experimental

Crystal data

$$\begin{split} & \left[Zn(C_{20}H_{12}Cl_2N_2O_2)(C_5H_5N) \right] \\ & M_r = 527.71 \\ & Triclinic, P\overline{1} \\ & a = 7.9840 \; (4) \; \text{\AA} \\ & b = 12.6632 \; (6) \; \text{\AA} \\ & c = 22.3163 \; (11) \; \text{\AA} \\ & \alpha = 91.574 \; (3)^{\circ} \\ & \beta = 94.154 \; (3)^{\circ} \end{split}$$

Data collection

Bruker SMART APEX II CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.489, T_{max} = 0.855$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.039$ $wR(F^2) = 0.111$ S = 1.0715712 reflections

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - H \cdots A$
$C9B-H9BA\cdotsO1A^{i}$	0.93	2.35	3.261 (2)	167
$C21B - H21B \cdots N1B$ $C22A - H22A \cdots O1A^{ii}$	0.93	2.59	3.198 (3) 3.199 (3)	123 141
$C25A - H25A \cdots O2A$ $C5B - H5BA \cdots Ca^{3^{i}}$	0.93	2.60	3.175 (3) 3.463 (3)	121
$C21A - H21A \cdots Cg1$ $C21B - H21B \cdots Cg2$	0.93 0.93	2.97 2.80	3.397 (3) 3.301 (2)	103 109 115

Symmetry codes: (i) -x, -y + 1, -z + 1; (ii) x - 1, y, z. Cg1, Cg2 and Cg3 are the centroids of rings Zn1A/O1A/C1A/C6A/C7A/N1A, Zn1B/O1B/C1B/C6B/C7B/N1B and C1A-C6A, respectively.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *APEX2*; data reduction: *SAINT* (Bruker, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 1998); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2003).

The authors thank the Malaysian Government, the Ministry of Science Technology and Innovation, Malaysia (MOSTI),

[‡] On study leave from International University of Africa, Sudan. § Additional correspondence author, email: suchada.c@psu.ac.th.

and Universiti Sains Malaysia for research grants and facilities. The International University of Africa (Sudan) is acknowledged for providing study leave to NEE. The authors also thank Universiti Sains Malaysia for the Fundamental Research Grant Scheme (FRGS) grant No. 203/PFIZIK/ 671064.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2317).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

- Bruker (2005). *APEX2* (Version 1.27), *SAINT* (Version 7.12A) and *SADABS* (Version 2004/1). Bruker AXS Inc., Madison, Wisconsin, USA.
- Collinson, S. R. & Fenton, D. E. (1996). Coord. Chem. Rev. 148, 19-40.
- Eltayeb, N. E., Teoh, S. G., Chantrapromma, S., Fun, H.-K. & Ibrahim, K. (2007). Acta Cryst. E63, m1633-m1634.
- Humphrey, E. R., Mann, K. L. V., Reeves, Z. R., Behrendt, A., Jeffery, J. C., Maher, J. P., McCleverty, J. A. & Ward, M. D. (1999). New J. Chem. 23, 417– 423.
- Pal, S., Barik, A. K., Gupta, S., Hazra, A., Kar, S. K., Peng, S.-M., Lee, G.-H., Butcher, R. J., El Fallah, M. S. & Ribas, J. (2005). *Inorg. Chem.* 44, 3880– 3889.
- Sheldrick, G. M. (1998). *SHELXTL*. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tarafder, M. T. H., Chew, K.-B., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2683–2690.
- Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547–2554.

Acta Cryst. (2007). E63, m1672-m1673 [doi:10.1107/S1600536807022829]

{4,4'-Dichloro-2,2'-[1,2-phenylenebis(nitrilomethylidyne)]diphenolato- $\kappa^4 O$, N, N', O'}(pyridine- κN)zinc(II)

N. E. Eltayeb, S. G. Teoh, S. Chantrapromma, H.-K. Fun and K. Ibrahim

Comment

Schiff base ligands have played an important role in the development of coordination chemistry as they readily form stable complexes with most transition metal ions (Pal *et al.*, 2005). It is also well known that zinc complexes with Schiff-bases are important in biological systems and coordination chemistry (Collinson & Fenton, 1996; Tarafder, Chew *et al.*, 2002; Tarafder, Jin *et al.*, 2002). Recently, we reported the crystal structure of aqua {2,2'-[1,2-phenylenebis(nitrilomethylidyne)]bis(4-methoxyphenolato)- κ^4 O,O',N,N'}zinc(II), (II), derived from a related Schiff base ligand (Eltayeb *et al.*, 2007). As an extension of our investigations of the structure of Schiff base zinc(II) complexes, the title mononuclear zinc(II) complex, (I) is reported here.

Complex (I) is a mononuclear zinc(II) compound (Fig. 1). There are two unique molecules in the asymmetric unit. Each Zn^{II} ion is in a distorted square pyramidal geometry and five-coordinated by two N and two O atoms of a Schiff-base ligand forming the basal plane, and by the N atom of pyridine at the axial position. The bond lengths and angles are within normal ranges (Allen *et al.*, 1987) and comparable to the values in another closely related zinc(II) complex, (II) (Eltayeb *et al.*, 2007). The bond angles around the central metal zinc(II) show some deviation from ideal square pyramidal geometry. The dihedral angles between the pyridine (C21–C25/N3) and C1–C6 or C15–C20 rings are 89.75 (11)° and 74.44 (10)°, respectively in molecule A [88.32 (10)Å and 75.71 (10)° in molecule B].

In the crystal structure of (I) as shown Fig. 2, adjacent molecules are linked through weak C—H···Cl interactions into chains running along the *b* axis. Between the adjacent chains, there are molecules which are arranged diagonally and are bridging these chains through weak C—H···O interactions. The crystal is stabilized by weak C—H···O intra- and intermolecular interactions (Table 1). C—H··· π were also observed; Cg_1 , Cg_2 and Cg_3 are the centroids of Zn1A–O1A–C1A–C6A–C7A–N1A, Zn1B–O1B–C1B–C6B–C7B–N1B and C1A–C6A, respectively (Table 1).

Experimental

The title compound (I) was synthesized by adding 5-chloro-2-hydroxybenzaldehyde (0.624 g, 4 mmol) to a solution of o-phenylenediamine (0.216 g, 2 mmol) in 95% ethanol (20 ml). The mixture was refluxed with stirring for half an hour. Zinc chloride (0.272 g, 2 mmol) in ethanol (10 ml) was then added, followed by triethylamine (0.5 ml, 3.6 mmol). The mixture was stirred at room temperature for 2 h. A yellow precipitate was obtained, washed with about 5 ml e thanol, dried, and then washed by a copious amount of diethyl ether. This precipitate was then dissolved in 20 ml of pyridine. Yellow single crystals of (I) suitable for *x*-ray structure determination formed after several days of slow evaporation of the pyridine at room temperature.

Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.96 Å. The U_{iso} values were constrained to be $1.2U_{eq}$ of the carrier atoms. The highest residual peak is located 1.17 Å from Cl1B and the deepest hole is located 0.73 Å from Zn1A.

Figures

Fig. 1. The asymmetric unit of (I), showing 60% probability displacement ellipsoids and the atomic numbering.

Fig. 2. The crystal packing of (I), viewed along the *a* axis. Hydrogen bonds are shown as dashed lines.

$\label{eq:constraint} $$ \{4,4'-Dichloro-2,2'-[1,2-phenylenebis(nitrilomethylidyne)] diphenolato- \kappa^4O, N, N', O' $$ (pyridine-\kappa N)zinc(II) $$ (Prior Constraint) $$ (Prior Con$

Crystal data	
[Zn(C ₂₀ H ₁₂ Cl ₂ N ₂ O ₂)(C ₅ H ₅ N)]	Z = 4
$M_r = 527.71$	$F_{000} = 1072$
Triclinic, <i>P</i> T	$D_{\rm x} = 1.606 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo K α radiation $\lambda = 0.71073$ Å
a = 7.9840 (4) Å	Cell parameters from 15712 reflections
b = 12.6632 (6) Å	$\theta = 0.9 - 32.5^{\circ}$
c = 22.3163 (11) Å	$\mu = 1.40 \text{ mm}^{-1}$
$\alpha = 91.574 \ (3)^{\circ}$	T = 100.0 (1) K
$\beta = 94.154 \ (3)^{\circ}$	Needle, yellow
$\gamma = 103.791 \ (3)^{\circ}$	$0.60\times0.20\times0.12~mm$
$V = 2183.11 (19) Å^3$	
Data collection	
Devilson CMADE ADEX IL CCD anag. data ata	_

Bruker SMART APEX II CCD area-detector diffractometer	15712 independent reflections
Radiation source: fine-focus sealed tube	12030 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.060$
Detector resolution: 8.33 pixels mm ⁻¹	$\theta_{\text{max}} = 32.5^{\circ}$
T = 100.0(1) K	$\theta_{\min} = 0.9^{\circ}$

ω scans	$h = -11 \rightarrow 12$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$k = -19 \rightarrow 19$
$T_{\min} = 0.489, \ T_{\max} = 0.855$	$l = -33 \rightarrow 33$
55655 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.039$	H-atom parameters constrained
$wR(F^2) = 0.111$	$w = 1/[\sigma^2(F_o^2) + (0.0438P)^2 + 1.047P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.07	$(\Delta/\sigma)_{\text{max}} = 0.001$
15712 reflections	$\Delta \rho_{max} = 0.59 \text{ e } \text{\AA}^{-3}$
595 parameters	$\Delta \rho_{min} = -0.67 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Experimental. The low-temparture data was collected with the Oxford Cyrosystem Cobra low-temperature attachment.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Zn1A	0.07617 (3)	0.304165 (17)	0.886205 (10)	0.01428 (5)
Cl1A	-0.08004 (10)	-0.22912 (5)	0.72552 (3)	0.03907 (15)
Cl2A	0.60377 (7)	0.80907 (4)	1.03804 (2)	0.02316 (10)
O1A	0.13688 (18)	0.22551 (11)	0.81699 (6)	0.0176 (3)
O2A	0.24672 (18)	0.44173 (11)	0.87359 (6)	0.0183 (3)
N1A	-0.0384 (2)	0.15259 (13)	0.92090 (7)	0.0168 (3)
N2A	0.0915 (2)	0.34531 (13)	0.97772 (7)	0.0150 (3)
N3A	-0.1483 (2)	0.34607 (14)	0.85123 (7)	0.0179 (3)
C1A	0.0853 (2)	0.12367 (15)	0.79939 (9)	0.0165 (3)
C2A	0.1296 (3)	0.09106 (17)	0.74236 (9)	0.0209 (4)
H2AB	0.1953	0.1431	0.7194	0.025*
C3A	0.0783 (3)	-0.01512 (18)	0.72002 (10)	0.0249 (4)

H3AB	0.1075	-0.0337	0.6822	0.030*
C4A	-0.0174 (3)	-0.09444 (17)	0.75420 (10)	0.0250 (4)
C5A	-0.0601 (3)	-0.06862 (16)	0.81019 (10)	0.0222 (4)
H5AB	-0.1221	-0.1230	0.8327	0.027*
C6A	-0.0108 (2)	0.03992 (15)	0.83404 (9)	0.0178 (3)
C7A	-0.0575 (2)	0.05834 (15)	0.89393 (9)	0.0179 (3)
H7AB	-0.1052	-0.0026	0.9149	0.021*
C8A	-0.0853 (2)	0.16341 (15)	0.98018 (9)	0.0166 (3)
C9A	-0.2003 (3)	0.08306 (16)	1.00863 (10)	0.0215 (4)
H9AB	-0.2516	0.0170	0.9881	0.026*
C10A	-0.2384 (3)	0.10095 (18)	1.06700 (10)	0.0237 (4)
H10A	-0.3146	0.0468	1.0856	0.028*
C11A	-0.1638 (3)	0.19910 (18)	1.09781 (9)	0.0220 (4)
H11A	-0.1872	0.2100	1.1374	0.026*
C12A	-0.0538 (3)	0.28133 (16)	1.06969 (9)	0.0194 (4)
H12A	-0.0067	0.3479	1.0902	0.023*
C13A	-0.0133 (2)	0.26499 (15)	1.01086 (9)	0.0158 (3)
C14A	0.1872 (2)	0.43397 (15)	1.00396 (9)	0.0161 (3)
H14A	0.1856	0.4417	1.0455	0.019*
C15A	0.2958 (2)	0.52160 (15)	0.97474 (8)	0.0153 (3)
C16A	0.3845 (2)	0.61156 (15)	1.01271 (9)	0.0175 (3)
H16A	0.3680	0.6115	1.0535	0.021*
C17A	0.4945 (2)	0.69887 (15)	0.99026 (9)	0.0181 (3)
C18A	0.5231 (3)	0.69989 (16)	0.92920 (9)	0.0195 (4)
H18A	0.5982	0.7592	0.9142	0.023*
C19A	0.4393 (3)	0.61260 (16)	0.89141 (9)	0.0189 (4)
H19A	0.4602	0.6140	0.8509	0.023*
C20A	0.3216 (2)	0.52012 (15)	0.91204 (9)	0.0157 (3)
C21A	-0.3028 (3)	0.2735 (2)	0.84529 (10)	0.0243 (4)
H21A	-0.3103	0.2043	0.8595	0.029*
C22A	-0.4504 (3)	0.2972 (2)	0.81903 (11)	0.0336 (6)
H22A	-0.5547	0.2447	0.8152	0.040*
C23A	-0.4407 (3)	0.4002 (3)	0.79847 (11)	0.0393 (7)
H23A	-0.5387	0.4183	0.7809	0.047*
C24A	-0.2821 (4)	0.4764 (2)	0.80436 (11)	0.0353 (6)
H24A	-0.2720	0.5462	0.7908	0.042*
C25A	-0.1397 (3)	0.44592 (19)	0.83093 (9)	0.0237 (4)
H25A	-0.0336	0.4967	0.8349	0.028*
Zn1B	0.24994 (3)	0.750502 (17)	0.446624 (10)	0.01377 (5)
Cl1B	0.53214 (8)	1.14642 (5)	0.21623 (3)	0.03329 (13)
Cl2B	0.45724 (7)	0.33521 (4)	0.64416 (2)	0.02195 (10)
O1B	0.40173 (18)	0.89342 (11)	0.43171 (6)	0.0168 (3)
O2B	0.37564 (19)	0.72741 (11)	0.52269 (6)	0.0189 (3)
N1B	0.1634 (2)	0.73368 (12)	0.35419 (7)	0.0142 (3)
N2B	0.1587 (2)	0.58051 (13)	0.43293 (7)	0.0142 (3)
N3B	0.0454 (2)	0.80835 (13)	0.47794 (7)	0.0160 (3)
C1B	0.4220 (2)	0.94502 (15)	0.38263 (9)	0.0152 (3)
C2B	0.5361 (3)	1.05123 (16)	0.38571 (9)	0.0192 (4)
H2BA	0.5904	1.0804	0.4228	0.023*

C3B	0.5683 (3)	1.11150 (16)	0.33587 (10)	0.0214 (4)
H3BA	0.6427	1.1805	0.3395	0.026*
C4B	0.4892 (3)	1.06911 (17)	0.27962 (10)	0.0222 (4)
C5B	0.3774 (3)	0.96788 (16)	0.27388 (9)	0.0198 (4)
H5BA	0.3252	0.9407	0.2362	0.024*
C6B	0.3405 (2)	0.90455 (15)	0.32454 (9)	0.0163 (3)
C7B	0.2218 (2)	0.79992 (15)	0.31328 (9)	0.0154 (3)
H7BA	0.1841	0.7781	0.2735	0.019*
C8B	0.0507 (2)	0.63124 (14)	0.33783 (8)	0.0135 (3)
C9B	-0.0596 (2)	0.60894 (15)	0.28505 (8)	0.0155 (3)
H9BA	-0.0655	0.6642	0.2590	0.019*
C10B	-0.1604 (2)	0.50445 (16)	0.27149 (9)	0.0181 (3)
H10B	-0.2319	0.4896	0.2360	0.022*
C11B	-0.1547 (3)	0.42217 (16)	0.31074 (9)	0.0187 (4)
H11B	-0.2211	0.3520	0.3011	0.022*
C12B	-0.0506 (2)	0.44382 (15)	0.36435 (9)	0.0169 (3)
H12B	-0.0498	0.3885	0.3908	0.020*
C13B	0.0531 (2)	0.54836 (15)	0.37879 (8)	0.0142 (3)
C14B	0.1999 (2)	0.50880 (15)	0.46748 (8)	0.0153 (3)
H14B	0.1559	0.4361	0.4552	0.018*
C15B	0.3069 (2)	0.53088 (15)	0.52288 (8)	0.0146 (3)
C16B	0.3296 (2)	0.43856 (15)	0.55369 (9)	0.0162 (3)
H16B	0.2727	0.3693	0.5383	0.019*
C17B	0.4345 (2)	0.45012 (16)	0.60595 (8)	0.0164 (3)
C18B	0.5276 (2)	0.55356 (17)	0.62836 (9)	0.0181 (3)
H18B	0.6021	0.5607	0.6631	0.022*
C19B	0.5087 (2)	0.64438 (16)	0.59897 (9)	0.0179 (3)
H19B	0.5729	0.7124	0.6140	0.021*
C20B	0.3942 (2)	0.63808 (15)	0.54630 (8)	0.0152 (3)
C21B	-0.0590 (3)	0.84549 (17)	0.43842 (9)	0.0201 (4)
H21B	-0.0387	0.8437	0.3979	0.024*
C22B	-0.1952 (3)	0.88633 (18)	0.45506 (11)	0.0257 (4)
H22B	-0.2652	0.9107	0.4261	0.031*
C23B	-0.2268 (3)	0.8907 (2)	0.51480 (11)	0.0291 (5)
H23B	-0.3181	0.9176	0.5270	0.035*
C24B	-0.1182 (3)	0.8536 (2)	0.55642 (10)	0.0278 (5)
H24B	-0.1354	0.8555	0.5972	0.033*
C25B	0.0159 (3)	0.81361 (17)	0.53625 (9)	0.0209 (4)
H25C	0.0885	0.7894	0.5643	0.025*

Atomic displacement parameters (\AA^2)

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
Zn1A	0.01486 (10)	0.01347 (10)	0.01347 (10)	0.00164 (7)	0.00036 (7)	-0.00008 (7)
Cl1A	0.0577 (4)	0.0196 (3)	0.0383 (3)	0.0077 (2)	0.0031 (3)	-0.0118 (2)
Cl2A	0.0251 (2)	0.0156 (2)	0.0251 (2)	-0.00055 (16)	-0.00211 (18)	-0.00449 (17)
O1A	0.0198 (6)	0.0153 (6)	0.0171 (6)	0.0026 (5)	0.0025 (5)	-0.0008 (5)
O2A	0.0201 (6)	0.0174 (6)	0.0141 (6)	-0.0018 (5)	0.0009 (5)	-0.0014 (5)

N1A	0.0170 (7)	0.0156 (7)	0.0165 (7)	0.0018 (5)	0.0007 (6)	0.0003 (6)
N2A	0.0157 (7)	0.0138 (7)	0.0150 (7)	0.0024 (5)	0.0010 (5)	0.0014 (5)
N3A	0.0174 (7)	0.0215 (8)	0.0156 (7)	0.0064 (6)	0.0015 (6)	-0.0031 (6)
C1A	0.0147 (8)	0.0179 (8)	0.0171 (8)	0.0061 (6)	-0.0029 (6)	-0.0017 (7)
C2A	0.0211 (9)	0.0235 (9)	0.0189 (9)	0.0071 (7)	0.0021 (7)	-0.0024 (7)
C3A	0.0272 (10)	0.0257 (10)	0.0234 (10)	0.0110 (8)	-0.0007 (8)	-0.0077 (8)
C4A	0.0297 (10)	0.0164 (9)	0.0293 (11)	0.0085 (7)	-0.0022 (8)	-0.0074 (8)
C5A	0.0259 (10)	0.0152 (8)	0.0247 (10)	0.0047 (7)	-0.0017 (8)	-0.0025 (7)
C6A	0.0183 (8)	0.0147 (8)	0.0201 (9)	0.0043 (6)	-0.0017 (7)	-0.0002 (7)
C7A	0.0190 (8)	0.0142 (8)	0.0191 (9)	0.0025 (6)	-0.0014 (7)	0.0014 (7)
C8A	0.0176 (8)	0.0158 (8)	0.0161 (8)	0.0036 (6)	0.0002 (6)	0.0022 (6)
C9A	0.0237 (9)	0.0162 (8)	0.0233 (10)	0.0014 (7)	0.0039 (7)	0.0031 (7)
C10A	0.0249 (10)	0.0218 (9)	0.0244 (10)	0.0029 (7)	0.0087 (8)	0.0063 (8)
C11A	0.0243 (9)	0.0251 (10)	0.0177 (9)	0.0061 (7)	0.0071 (7)	0.0051 (7)
C12A	0.0206 (9)	0.0191 (9)	0.0183 (9)	0.0043 (7)	0.0032 (7)	0.0007 (7)
C13A	0.0141 (7)	0.0167 (8)	0.0164 (8)	0.0033 (6)	0.0013 (6)	0.0038 (6)
C14A	0.0179 (8)	0.0163 (8)	0.0141 (8)	0.0044 (6)	0.0008 (6)	0.0002 (6)
C15A	0.0157 (8)	0.0136 (8)	0.0166 (8)	0.0035 (6)	0.0014 (6)	0.0000 (6)
C16A	0.0192 (8)	0.0164 (8)	0.0168 (8)	0.0047 (6)	0.0002 (7)	0.0001 (7)
C17A	0.0182 (8)	0.0142 (8)	0.0207 (9)	0.0027 (6)	-0.0019 (7)	-0.0033 (7)
C18A	0.0172 (8)	0.0162 (8)	0.0237 (10)	0.0010 (6)	0.0014 (7)	0.0014 (7)
C19A	0.0197 (8)	0.0172 (8)	0.0186 (9)	0.0014 (7)	0.0030 (7)	0.0015 (7)
C20A	0.0151 (8)	0.0154 (8)	0.0167 (8)	0.0033 (6)	0.0018 (6)	0.0013 (6)
C21A	0.0176 (9)	0.0337 (11)	0.0204 (10)	0.0041 (8)	0.0023 (7)	-0.0041 (8)
C22A	0.0175 (9)	0.0593 (17)	0.0241 (11)	0.0113 (10)	-0.0012 (8)	-0.0093 (11)
C23A	0.0324 (12)	0.071 (2)	0.0242 (11)	0.0350 (13)	-0.0038 (9)	-0.0073 (12)
C24A	0.0454 (14)	0.0474 (15)	0.0237 (11)	0.0317 (12)	0.0031 (10)	0.0035 (10)
C25A	0.0282 (10)	0.0273 (10)	0.0191 (9)	0.0134 (8)	0.0017 (8)	0.0007 (8)
Zn1B	0.01546 (10)	0.01179 (10)	0.01394 (10)	0.00336 (7)	0.00016 (7)	0.00078 (7)
Cl1B	0.0322 (3)	0.0312 (3)	0.0329 (3)	-0.0022 (2)	0.0057 (2)	0.0176 (2)
Cl2B	0.0260 (2)	0.0213 (2)	0.0208 (2)	0.01013 (17)	-0.00032 (17)	0.00674 (17)
O1B	0.0184 (6)	0.0147 (6)	0.0163 (6)	0.0023 (5)	0.0009 (5)	0.0009 (5)
O2B	0.0241 (7)	0.0144 (6)	0.0171 (6)	0.0045 (5)	-0.0044 (5)	0.0004 (5)
N1B	0.0142 (7)	0.0117 (6)	0.0170 (7)	0.0038 (5)	0.0012 (5)	0.0014 (5)
N2B	0.0155 (7)	0.0135 (7)	0.0133 (7)	0.0031 (5)	0.0011 (5)	0.0004 (5)
N3B	0.0160 (7)	0.0133 (7)	0.0188 (7)	0.0029 (5)	0.0031 (6)	0.0008 (6)
C1B	0.0150 (8)	0.0135 (8)	0.0181 (8)	0.0045 (6)	0.0030 (6)	0.0009 (6)
C2B	0.0185 (8)	0.0152 (8)	0.0229 (9)	0.0019 (6)	0.0029 (7)	-0.0008 (7)
C3B	0.0190 (9)	0.0140 (8)	0.0309 (11)	0.0015 (6)	0.0069 (8)	0.0034 (7)
C4B	0.0220 (9)	0.0200 (9)	0.0253 (10)	0.0044 (7)	0.0062 (7)	0.0105 (8)
C5B	0.0186 (8)	0.0187 (9)	0.0218 (9)	0.0034 (7)	0.0028 (7)	0.0041 (7)
C6B	0.0153 (8)	0.0152 (8)	0.0186 (9)	0.0035 (6)	0.0029 (6)	0.0021 (7)
C7B	0.0154 (8)	0.0158 (8)	0.0157 (8)	0.0046 (6)	0.0016 (6)	0.0015 (6)
C8B	0.0138 (7)	0.0125 (7)	0.0139 (8)	0.0025 (6)	0.0024 (6)	-0.0007 (6)
C9B	0.0171 (8)	0.0163 (8)	0.0136 (8)	0.0047 (6)	0.0018 (6)	0.0022 (6)
C10B	0.0180 (8)	0.0201 (9)	0.0157 (8)	0.0044 (7)	-0.0009 (6)	-0.0005 (7)
C11B	0.0189 (8)	0.0158 (8)	0.0197 (9)	0.0013 (6)	0.0012 (7)	-0.0018 (7)
C12B	0.0190 (8)	0.0140 (8)	0.0172 (8)	0.0026 (6)	0.0015 (6)	0.0026 (6)
C13B	0.0150 (7)	0.0150 (8)	0.0126 (8)	0.0032 (6)	0.0017 (6)	0.0015 (6)

C14B	0.0173 (8)	0.0128 (7)	0.0153 (8)	0.0028 (6)	0.0017 (6)	-0.0004 (6)
C15B	0.0146 (7)	0.0152 (8)	0.0145 (8)	0.0041 (6)	0.0019 (6)	0.0021 (6)
C16B	0.0161 (8)	0.0164 (8)	0.0169 (8)	0.0050 (6)	0.0032 (6)	0.0026 (6)
C17B	0.0172 (8)	0.0188 (8)	0.0153 (8)	0.0078 (6)	0.0026 (6)	0.0045 (7)
C18B	0.0177 (8)	0.0235 (9)	0.0142 (8)	0.0076 (7)	-0.0008 (6)	0.0017 (7)
C19B	0.0168 (8)	0.0187 (8)	0.0174 (9)	0.0034 (6)	0.0001 (6)	-0.0012 (7)
C20B	0.0158 (8)	0.0156 (8)	0.0143 (8)	0.0040 (6)	0.0020 (6)	0.0009 (6)
C21B	0.0206 (9)	0.0209 (9)	0.0201 (9)	0.0079 (7)	0.0015 (7)	0.0013 (7)
C22B	0.0197 (9)	0.0245 (10)	0.0341 (12)	0.0088 (8)	0.0008 (8)	-0.0030 (9)
C23B	0.0181 (9)	0.0313 (11)	0.0367 (12)	0.0037 (8)	0.0072 (8)	-0.0120 (9)
C24B	0.0257 (10)	0.0316 (11)	0.0232 (10)	0.0003 (8)	0.0076 (8)	-0.0067 (9)
C25B	0.0211 (9)	0.0195 (9)	0.0192 (9)	-0.0013 (7)	0.0030 (7)	-0.0003 (7)

Geometric parameters (Å, °)

Zn1A—O1A	1.9665 (14)	Zn1B—O2B	1.9734 (14)
Zn1A—O2A	1.9798 (13)	Zn1B—O1B	1.9750 (13)
Zn1A—N2A	2.0815 (16)	Zn1B—N3B	2.0971 (17)
Zn1A—N3A	2.0919 (17)	Zn1B—N2B	2.1076 (16)
Zn1A—N1A	2.1138 (16)	Zn1B—N1B	2.1160 (16)
Cl1A—C4A	1.748 (2)	Cl1B—C4B	1.750 (2)
Cl2A—C17A	1.7459 (19)	Cl2B—C17B	1.7462 (19)
O1A—C1A	1.297 (2)	O1B—C1B	1.291 (2)
O2A—C20A	1.294 (2)	O2B—C20B	1.296 (2)
N1A—C7A	1.293 (3)	N1B—C7B	1.293 (2)
N1A—C8A	1.412 (3)	N1B—C8B	1.413 (2)
N2A—C14A	1.295 (2)	N2B—C14B	1.293 (2)
N2A—C13A	1.416 (2)	N2B—C13B	1.414 (2)
N3A—C25A	1.343 (3)	N3B—C21B	1.341 (3)
N3A—C21A	1.347 (3)	N3B—C25B	1.342 (3)
C1A—C2A	1.422 (3)	C1B—C2B	1.430 (3)
C1A—C6A	1.433 (3)	C1B—C6B	1.431 (3)
C2A—C3A	1.377 (3)	C2B—C3B	1.371 (3)
C2A—H2AB	0.9300	C2B—H2BA	0.9300
C3A—C4A	1.391 (3)	C3B—C4B	1.396 (3)
СЗА—НЗАВ	0.9300	СЗВ—НЗВА	0.9300
C4A—C5A	1.370 (3)	C4B—C5B	1.373 (3)
C5A—C6A	1.414 (3)	C5B—C6B	1.412 (3)
С5А—Н5АВ	0.9300	C5B—H5BA	0.9300
С6А—С7А	1.441 (3)	C6B—C7B	1.437 (3)
С7А—Н7АВ	0.9300	С7В—Н7ВА	0.9300
C8A—C9A	1.399 (3)	C8B—C9B	1.398 (3)
C8A—C13A	1.413 (3)	C8B—C13B	1.413 (3)
C9A—C10A	1.384 (3)	C9B—C10B	1.387 (3)
С9А—Н9АВ	0.9300	С9В—Н9ВА	0.9300
C10A—C11A	1.383 (3)	C10B—C11B	1.386 (3)
C10A—H10A	0.9300	C10B—H10B	0.9300
C11A—C12A	1.389 (3)	C11B—C12B	1.388 (3)
C11A—H11A	0.9300	C11B—H11B	0.9300

C12A—C13A	1.396 (3)	C12B—C13B	1.399 (3)
C12A—H12A	0.9300	C12B—H12B	0.9300
C14A—C15A	1.439 (3)	C14B—C15B	1.432 (3)
C14A—H14A	0.9300	C14B—H14B	0.9300
C15A—C16A	1.412 (3)	C15B—C16B	1.414 (3)
C15A—C20A	1.429 (3)	C15B—C20B	1.435 (3)
C16A—C17A	1.370 (3)	C16B—C17B	1.369 (3)
C16A—H16A	0.9300	C16B—H16B	0.9300
C17A—C18A	1.398 (3)	C17B—C18B	1.402 (3)
C18A—C19A	1.377 (3)	C18B—C19B	1.373 (3)
C18A—H18A	0.9300	C18B—H18B	0.9300
C19A—C20A	1.426 (3)	C19B—C20B	1.424 (3)
C19A—H19A	0.9300	C19B—H19B	0.9300
C21A—C22A	1.378 (3)	C21B—C22B	1.380 (3)
C21A—H21A	0.9300	C21B—H21B	0.9300
C22A—C23A	1.381 (4)	C22B—C23B	1.377 (3)
C22A—H22A	0.9300	C22B—H22B	0.9300
C23A—C24A	1.392 (4)	C23B—C24B	1.391 (4)
C23A—H23A	0.9300	C23B—H23B	0.9300
C24A—C25A	1.385 (3)	C24B—C25B	1.386 (3)
C24A—H24A	0.9300	C24B—H24B	0.9300
C25A—H25A	0.9300	C25B—H25C	0.9300
O1A—Zn1A—O2A	94.27 (6)	O2B—Zn1B—O1B	96.46 (6)
O1A—Zn1A—N2A	152.35 (6)	O2B—Zn1B—N3B	101.63 (6)
O2A—Zn1A—N2A	90.19 (6)	O1B—Zn1B—N3B	97.23 (6)
O1A—Zn1A—N3A	101.93 (6)	O2B—Zn1B—N2B	89.26 (6)
O2A—Zn1A—N3A	98.92 (7)	O1B—Zn1B—N2B	153.84 (6)
N2A—Zn1A—N3A	104.30 (6)	N3B—Zn1B—N2B	106.60 (6)
O1A—Zn1A—N1A	88.80 (6)	O2B—Zn1B—N1B	159.13 (6)
O2A—Zn1A—N1A	160.78 (6)	O1B—Zn1B—N1B	88.79 (6)
N2A—Zn1A—N1A	78.67 (6)	N3B—Zn1B—N1B	97.70 (6)
N3A—Zn1A—N1A	98.99 (7)	N2B—Zn1B—N1B	77.66 (6)
C1A—O1A—Zn1A	130.17 (13)	C1B—O1B—Zn1B	130.18 (12)
C20A—O2A—Zn1A	129.38 (12)	C20B—O2B—Zn1B	130.32 (12)
C7A—N1A—C8A	121.75 (17)	C7B—N1B—C8B	120.31 (16)
C7A—N1A—Zn1A	125.75 (14)	C7B—N1B—Zn1B	126.05 (13)
C8A—N1A—Zn1A	112.40 (12)	C8B—N1B—Zn1B	112.91 (11)
C14A—N2A—C13A	121.22 (16)	C14B—N2B—C13B	120.78 (16)
C14A—N2A—Zn1A	125.28 (13)	C14B—N2B—Zn1B	125.35 (13)
C13A—N2A—Zn1A	113.50 (12)	C13B—N2B—Zn1B	113.74 (12)
C25A—N3A—C21A	117.93 (19)	C21B—N3B—C25B	117.53 (18)
C25A—N3A—Zn1A	120.16 (14)	C21B—N3B—Zn1B	119.04 (13)
C21A—N3A—Zn1A	121.81 (15)	C25B—N3B—Zn1B	123.39 (14)
O1A—C1A—C2A	118.42 (18)	O1B—C1B—C2B	118.05 (17)
O1A—C1A—C6A	124.65 (18)	O1B—C1B—C6B	125.45 (16)
C2A—C1A—C6A	116.91 (18)	C2B—C1B—C6B	116.50 (17)
C3A—C2A—C1A	122.1 (2)	C3B—C2B—C1B	122.30 (19)
C3A—C2A—H2AB	118.9	C3B—C2B—H2BA	118.8
C1A—C2A—H2AB	118.9	C1B—C2B—H2BA	118.8

C2A—C3A—C4A	119.7 (2)	C2B—C3B—C4B	119.90 (18)
С2А—С3А—НЗАВ	120.1	С2В—С3В—НЗВА	120.0
С4А—С3А—НЗАВ	120.1	С4В—С3В—Н3ВА	120.0
C5A—C4A—C3A	120.89 (19)	C5B—C4B—C3B	120.48 (19)
C5A—C4A—Cl1A	119.88 (18)	C5B—C4B—C11B	119.99 (17)
C3A—C4A—Cl1A	119.21 (17)	C3B—C4B—C11B	119.53 (15)
C4A—C5A—C6A	120.6 (2)	C4B—C5B—C6B	120.79 (19)
С4А—С5А—Н5АВ	119.7	C4B—C5B—H5BA	119.6
С6А—С5А—Н5АВ	119.7	C6B—C5B—H5BA	119.6
C5A—C6A—C1A	119.68 (19)	C5B—C6B—C1B	120.01 (17)
C5A—C6A—C7A	116.47 (18)	C5B—C6B—C7B	116.05 (17)
C1A—C6A—C7A	123.82 (17)	C1B—C6B—C7B	123.94 (17)
N1A—C7A—C6A	125.36 (18)	N1B—C7B—C6B	125.12 (18)
N1A—C7A—H7AB	117.3	N1B—C7B—H7BA	117.4
С6А—С7А—Н7АВ	117.3	С6В—С7В—Н7ВА	117.4
C9A—C8A—N1A	124.64 (17)	C9B—C8B—N1B	124.22 (16)
C9A—C8A—C13A	119.23 (18)	C9B—C8B—C13B	119.84 (16)
N1A—C8A—C13A	116.09 (16)	N1B—C8B—C13B	115.94 (16)
C10A—C9A—C8A	120.60 (19)	C10B—C9B—C8B	120.11 (17)
С10А—С9А—Н9АВ	119.7	C10B—C9B—H9BA	119.9
С8А—С9А—Н9АВ	119.7	C8B—C9B—H9BA	119.9
C11A—C10A—C9A	120.23 (19)	C11B—C10B—C9B	120.19 (18)
C11A—C10A—H10A	119.9	C11B—C10B—H10B	119.9
C9A—C10A—H10A	119.9	C9B—C10B—H10B	119.9
C10A—C11A—C12A	120.09 (19)	C10B—C11B—C12B	120.42 (17)
C10A—C11A—H11A	120.0	C10B—C11B—H11B	119.8
C12A—C11A—H11A	120.0	C12B—C11B—H11B	119.8
C11A—C12A—C13A	120.62 (19)	C11B—C12B—C13B	120.42 (17)
C11A—C12A—H12A	119.7	C11B—C12B—H12B	119.8
C13A—C12A—H12A	119.7	C13B—C12B—H12B	119.8
C12A—C13A—C8A	119.17 (17)	C12B—C13B—C8B	118.95 (16)
C12A—C13A—N2A	124.60 (17)	C12B—C13B—N2B	125.21 (16)
C8A—C13A—N2A	116.19 (17)	C8B—C13B—N2B	115.80 (15)
N2A—C14A—C15A	125.94 (18)	N2B—C14B—C15B	126.11 (17)
N2A—C14A—H14A	117.0	N2B—C14B—H14B	116.9
C15A—C14A—H14A	117.0	C15B—C14B—H14B	116.9
C16A—C15A—C20A	120.06 (17)	C16B—C15B—C14B	115.75 (16)
C16A—C15A—C14A	115.59 (17)	C16B—C15B—C20B	120.06 (17)
C20A—C15A—C14A	124.31 (17)	C14B—C15B—C20B	124.14 (17)
C17A—C16A—C15A	120.92 (18)	C17B—C16B—C15B	120.67 (18)
C17A—C16A—H16A	119.5	C17B—C16B—H16B	119.7
C15A—C16A—H16A	119.5	C15B—C16B—H16B	119.7
C16A—C17A—C18A	120.47 (18)	C16B—C17B—C18B	120.48 (17)
C16A—C17A—Cl2A	120.21 (16)	C16B—C17B—Cl2B	119.96 (15)
C18A—C17A—Cl2A	119.31 (15)	C18B—C17B—Cl2B	119.54 (15)
C19A—C18A—C17A	119.63 (18)	C19B—C18B—C17B	119.85 (17)
C19A—C18A—H18A	120.2	C19B—C18B—H18B	120.1
C17A—C18A—H18A	120.2	C17B—C18B—H18B	120.1
C18A—C19A—C20A	122.41 (18)	C18B—C19B—C20B	122.29 (18)

C18A—C19A—H19A	118.8	C18B—C19B—H19B	118.9
C20A—C19A—H19A	118.8	C20B—C19B—H19B	118.9
O2A—C20A—C19A	118.70 (17)	O2B—C20B—C19B	119.03 (17)
O2A—C20A—C15A	124.80 (16)	O2B—C20B—C15B	124.47 (17)
C19A—C20A—C15A	116.50 (17)	C19B—C20B—C15B	116.49 (17)
N3A—C21A—C22A	122.9 (2)	N3B—C21B—C22B	123.0 (2)
N3A—C21A—H21A	118.6	N3B—C21B—H21B	118.5
C22A—C21A—H21A	118.6	C22B—C21B—H21B	118.5
C21A—C22A—C23A	118.9 (2)	C23B—C22B—C21B	119.5 (2)
C21A—C22A—H22A	120.6	C23B—C22B—H22B	120.3
C23A—C22A—H22A	120.6	C21B—C22B—H22B	120.3
C22A—C23A—C24A	119.1 (2)	C22B—C23B—C24B	118.2 (2)
C22A—C23A—H23A	120.5	C22B—C23B—H23B	120.9
C24A—C23A—H23A	120.5	C24B—C23B—H23B	120.9
C25A—C24A—C23A	118.5 (3)	C25B—C24B—C23B	119.0 (2)
C25A—C24A—H24A	120.7	C25B—C24B—H24B	120.5
C23A—C24A—H24A	120.7	C23B—C24B—H24B	120.5
N3A—C25A—C24A	122.7 (2)	N3B—C25B—C24B	122.8 (2)
N3A—C25A—H25A	118.6	N3B—C25B—H25C	118.6
C24A—C25A—H25A	118.6	C24B—C25B—H25C	118.6
O2A—Zn1A—O1A—C1A	173.52 (16)	O2B—Zn1B—O1B—C1B	160.82 (16)
N2A—Zn1A—O1A—C1A	74.9 (2)	N3B—Zn1B—O1B—C1B	-96.53 (17)
N3A—Zn1A—O1A—C1A	-86.41 (17)	N2B—Zn1B—O1B—C1B	59.2 (2)
N1A—Zn1A—O1A—C1A	12.52 (17)	N1B—Zn1B—O1B—C1B	1.08 (17)
O1A—Zn1A—O2A—C20A	-154.74 (17)	O1B—Zn1B—O2B—C20B	-149.62 (17)
N2A—Zn1A—O2A—C20A	-2.06 (17)	N3B—Zn1B—O2B—C20B	111.60 (17)
N3A—Zn1A—O2A—C20A	102.45 (17)	N2B—Zn1B—O2B—C20B	4.79 (17)
N1A—Zn1A—O2A—C20A	-56.1 (3)	N1B—Zn1B—O2B—C20B	-45.9 (3)
O1A—Zn1A—N1A—C7A	-5.56 (17)	O2B—Zn1B—N1B—C7B	-100.1 (2)
O2A—Zn1A—N1A—C7A	-105.1 (2)	O1B—Zn1B—N1B—C7B	4.98 (16)
N2A—Zn1A—N1A—C7A	-160.76 (18)	N3B—Zn1B—N1B—C7B	102.11 (16)
N3A—Zn1A—N1A—C7A	96.33 (17)	N2B—Zn1B—N1B—C7B	-152.48 (17)
O1A—Zn1A—N1A—C8A	170.79 (13)	O2B—Zn1B—N1B—C8B	70.0 (2)
O2A—Zn1A—N1A—C8A	71.2 (2)	O1B—Zn1B—N1B—C8B	175.10 (13)
N2A—Zn1A—N1A—C8A	15.59 (13)	N3B—Zn1B—N1B—C8B	-87.77 (13)
N3A—Zn1A—N1A—C8A	-87.32 (13)	N2B—Zn1B—N1B—C8B	17.63 (12)
O1A—Zn1A—N2A—C14A	100.08 (19)	O2B—Zn1B—N2B—C14B	-3.12 (16)
O2A—Zn1A—N2A—C14A	0.49 (17)	O1B—Zn1B—N2B—C14B	100.12 (19)
N3A—Zn1A—N2A—C14A	-98.77 (17)	N3B—Zn1B—N2B—C14B	-105.04 (16)
N1A—Zn1A—N2A—C14A	164.72 (17)	N1B—Zn1B—N2B—C14B	160.49 (17)
O1A—Zn1A—N2A—C13A	-79.03 (18)	O2B—Zn1B—N2B—C13B	-179.06 (13)
O2A—Zn1A—N2A—C13A	-178.63 (13)	O1B—Zn1B—N2B—C13B	-75.83 (19)
N3A—Zn1A—N2A—C13A	82.11 (14)	N3B—Zn1B—N2B—C13B	79.01 (13)
N1A—Zn1A—N2A—C13A	-14.40 (13)	N1B—Zn1B—N2B—C13B	-15.45 (12)
O1A—Zn1A—N3A—C25A	-98.16 (15)	O2B—Zn1B—N3B—C21B	172.35 (14)
O2A—Zn1A—N3A—C25A	-1.84 (16)	O1B—Zn1B—N3B—C21B	74.19 (15)
N2A—Zn1A—N3A—C25A	90.65 (16)	N2B—Zn1B—N3B—C21B	-94.92 (15)
N1A—Zn1A—N3A—C25A	171.16 (15)	N1B—Zn1B—N3B—C21B	-15.56 (15)
O1A—Zn1A—N3A—C21A	78.24 (16)	O2B—Zn1B—N3B—C25B	-5.46 (16)

O2A—Zn1A—N3A—C21A	174.57 (15)	O1B—Zn1B—N3B—C25B	-103.61 (15)
N2A—Zn1A—N3A—C21A	-92.94 (16)	N2B—Zn1B—N3B—C25B	87.28 (15)
N1A—Zn1A—N3A—C21A	-12.43 (16)	N1B—Zn1B—N3B—C25B	166.64 (15)
Zn1A—O1A—C1A—C2A	170.62 (14)	Zn1B—O1B—C1B—C2B	176.85 (13)
Zn1A—O1A—C1A—C6A	-10.9 (3)	Zn1B—O1B—C1B—C6B	-3.7 (3)
O1A—C1A—C2A—C3A	-179.22 (19)	O1B—C1B—C2B—C3B	178.84 (19)
C6A—C1A—C2A—C3A	2.2 (3)	C6B—C1B—C2B—C3B	-0.7 (3)
C1A—C2A—C3A—C4A	-1.1 (3)	C1B—C2B—C3B—C4B	-0.4 (3)
C2A—C3A—C4A—C5A	-0.7 (3)	C2B—C3B—C4B—C5B	0.9 (3)
C2A—C3A—C4A—C11A	-179.45 (17)	C2B—C3B—C4B—Cl1B	-179.64 (17)
C3A—C4A—C5A—C6A	1.3 (3)	C3B—C4B—C5B—C6B	-0.2 (3)
Cl1A—C4A—C5A—C6A	-179.88 (16)	Cl1B—C4B—C5B—C6B	-179.70 (16)
C4A—C5A—C6A—C1A	-0.2 (3)	C4B—C5B—C6B—C1B	-0.9 (3)
C4A—C5A—C6A—C7A	-178.3(2)	C4B—C5B—C6B—C7B	-179.95 (19)
O1A—C1A—C6A—C5A	-179.97 (19)	O1B—C1B—C6B—C5B	-178.17 (19)
C2A—C1A—C6A—C5A	-1.5 (3)	C2B—C1B—C6B—C5B	1.3 (3)
O1A—C1A—C6A—C7A	-2.1 (3)	O1B—C1B—C6B—C7B	0.8 (3)
C2A— $C1A$ — $C6A$ — $C7A$	176.47 (19)	C2B— $C1B$ — $C6B$ — $C7B$	-179.71 (18)
C8A—N1A—C7A—C6A	-179.00(18)	C8B—N1B—C7B—C6B	-178.18(18)
Zn1A—N1A—C7A—C6A	-3.0(3)	Zn1B—N1B—C7B—C6B	-8.7 (3)
C5A—C6A—C7A—N1A	-173.03(19)	C5B—C6B—C7B—N1B	-175.09(19)
C1A - C6A - C7A - N1A	90(3)	C1B - C6B - C7B - N1B	59(3)
C7A - N1A - C8A - C9A	-204(3)	C7B— $N1B$ — $C8B$ — $C9B$	-270(3)
Zn1A—N1A—C8A—C9A	163.06 (17)	Zn1B—N1B—C8B—C9B	162.22.(15)
C7A— $N1A$ — $C8A$ — $C13A$	161.92 (18)	C7B—N1B—C8B—C13B	153.22 (18)
Zn1A—N1A—C8A—C13A	-14.6(2)	Zn1B—N1B—C8B—C13B	-17.5(2)
N1A—C8A—C9A—C10A	180.0 (2)	N1B-C8B-C9B-C10B	177.18 (18)
C13A—C8A—C9A—C10A	-2.4(3)	C13B—C8B—C9B—C10B	-3.1 (3)
C8A—C9A—C10A—C11A	0.4 (3)	C8B—C9B—C10B—C11B	1.2 (3)
C9A—C10A—C11A—C12A	1.8 (3)	C9B—C10B—C11B—C12B	1.1 (3)
C10A—C11A—C12A—C13A	-1.9(3)	C10B—C11B—C12B—C13B	-1.5 (3)
C11A— $C12A$ — $C13A$ — $C8A$	-0.2(3)	C11B - C12B - C13B - C8B	-0.3(3)
C11A—C12A—C13A—N2A	177.24 (19)	C11B— $C12B$ — $C13B$ — $N2B$	177.46 (18)
C9A - C8A - C13A - C12A	2.3 (3)	C9B - C8B - C13B - C12B	2.6 (3)
N1A - C8A - C13A - C12A	-179.89(18)	N1B— $C8B$ — $C13B$ — $C12B$	-177.65(17)
C9A - C8A - C13A - N2A	-17529(18)	C9B = C8B = C13B = N2B	-175 37 (17)
N1A - C8A - C13A - N2A	2,5 (3)	N1B— $C8B$ — $C13B$ — $N2B$	4 4 (2)
C14A - N2A - C13A - C12A	145(3)	C14B— $N2B$ — $C13B$ — $C12B$	171(3)
Zn1A— $N2A$ — $C13A$ — $C12A$	-16632(16)	Zn1B—N2B—C13B—C12B	-16678(16)
C14A - N2A - C13A - C8A	-168.00(18)	$C_{14B} = N_{2B} = C_{13B} = C_{8B}$	-165 12 (17)
Zn1A N2A $C13A$ $C8A$	11 1 (2)	$Z_n 1B - N^2 B - C^{13} B - C^{8} B$	110(2)
C_{13A} N2A C_{14A} C_{15A}	-17879(18)	C13B - N2B - C14B - C15B	179 31 (17)
Zn1A—N2A—C14A—C15A	2.2.(3)	Zn1B—N2B—C14B—C15B	36(3)
N2A— $C14A$ — $C15A$ — $C16A$	178 22 (19)	N2B— $C14B$ — $C15B$ — $C16B$	178 27 (18)
N2A— $C14A$ — $C15A$ — $C20A$	-40(3)	N2B— $C14B$ — $C15B$ — $C20B$	-43(3)
C20A— $C15A$ — $C16A$ — $C17A$	07(3)	C14B-C15B-C16B-C17B	177 56 (17)
C14A - C15A - C16A - C17A	178 59 (18)	C_{20B} C_{15B} C_{16B} C_{17B} C_{17B}	0.0(3)
C15A-C16A-C17A-C18A	-0.9 (3)	C15B—C16B—C17B—C18B	-3.0(3)
C15A-C16A-C17A-C12A	-179.71 (15)	C15B-C16B-C17B-C12B	178.64 (14)

C16A—C17A—C18A—C19A	0.3 (3)	C16B—C17B—C18B—C19B	2.4 (3)
Cl2A—C17A—C18A—C19A	179.07 (16)	Cl2B—C17B—C18B—C19B	-179.17 (15)
C17A—C18A—C19A—C20A	0.6 (3)	C17B-C18B-C19B-C20B	1.1 (3)
Zn1A—O2A—C20A—C19A	-179.07 (14)	Zn1B-02B-C20B-C19B	172.92 (13)
Zn1A—O2A—C20A—C15A	1.0 (3)	Zn1B—O2B—C20B—C15B	-6.8 (3)
C18A—C19A—C20A—O2A	179.36 (19)	C18B—C19B—C20B—O2B	176.31 (18)
C18A—C19A—C20A—C15A	-0.7 (3)	C18B-C19B-C20B-C15B	-3.9 (3)
C16A—C15A—C20A—O2A	179.99 (19)	C16B—C15B—C20B—O2B	-176.93 (18)
C14A—C15A—C20A—O2A	2.3 (3)	C14B-C15B-C20B-O2B	5.7 (3)
C16A—C15A—C20A—C19A	0.1 (3)	C16B-C15B-C20B-C19B	3.3 (3)
C14A—C15A—C20A—C19A	-177.60 (18)	C14B-C15B-C20B-C19B	-174.00 (17)
C25A—N3A—C21A—C22A	0.6 (3)	C25B—N3B—C21B—C22B	-1.2 (3)
Zn1A—N3A—C21A—C22A	-175.93 (17)	Zn1B—N3B—C21B—C22B	-179.15 (16)
N3A—C21A—C22A—C23A	-0.8 (3)	N3B-C21B-C22B-C23B	0.5 (3)
C21A—C22A—C23A—C24A	0.6 (4)	C21B-C22B-C23B-C24B	0.2 (3)
C22A—C23A—C24A—C25A	-0.2 (4)	C22B—C23B—C24B—C25B	-0.3 (3)
C21A—N3A—C25A—C24A	-0.1 (3)	C21B—N3B—C25B—C24B	1.2 (3)
Zn1A—N3A—C25A—C24A	176.41 (17)	Zn1B-N3B-C25B-C24B	178.99 (15)
C23A—C24A—C25A—N3A	0.0 (4)	C23B—C24B—C25B—N3B	-0.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C9B—H9BA····O1A ⁱ	0.93	2.35	3.261 (2)	167
C21B—H21B…N1B	0.93	2.59	3.198 (3)	123
C22A—H22A···O1A ⁱⁱ	0.93	2.42	3.199 (3)	141
C25A—H25A…O2A	0.93	2.60	3.175 (3)	121
C5B—H5BA···Cg3 ⁱ	0.93	3.06	3.463 (3)	108
C21A—H21A···Cg1	0.93	2.97	3.397 (3)	109
C21B—H21B…Cg2	0.93	2.80	3.301 (2)	115
Symmetry codes: (i) $-x$, $-y+1$, $-z+1$; (ii) $x-1$, y , z .				

